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Figure 8. Geologic map of Miocene megabreccia (Tbx, blue) and surrounding 
rocks, west-central part of Signal 7.5-minute quadrangle, west-central Arizona 
(Lucchitta and Suneson 1994). Red dot marks “Alamo schist” locality. Other 
major units: Qct, colluvium and talus; Tbf, conglomerate (’basin �ll’); Tmbb, 
basaltic andesite; Tk, arkosic conglomerate and sandstone; Tba, (basal) arkosic 
conglomerate; Yd, Ys, PLgn—Proterozoic crystalline rocks. Local Oligocene to 
Miocene stratigraphic sequence (oldest to youngest): Tba, Tbx, Tk, Tmbb, Tbf.
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Figure 7. “Alamo schist”; purported Orocopia Schist. (A) Roadside block (≈ 1.5 
m across) of dark-gray metarhyolite, with shiny sericitic foliation; sampled 
by Elliott and Corones (2019). (B, C) Phenocrysts in dark metarhyolite: 
embayed bipyramidal quartz (near extinction; magenta color is artifactual) 
and euhedral biotite largely altered to chlorite and sericite; plagioclase, 
heavily altered to calcite and sericite, with relict albite twinning. Phenocrysts 
are entirely uncharacteristic of Orocopia quartzofeldspathic schist, a 
thoroughly recrystallized metasedimentary rock. Turbid groundmass is largely 
quartz, calcite, and sericite. XP; WOV 4.3, 3.1 mm. (D) Breccia derived from 
metamorphosed rhyolitic lithic tu� or tu�aceous sandstone. Images A and 
D by Richard Hereford.
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Figure 6. Probability distributions for age of detrital zircon in Orocopia Schist 
in southeast California and southwest Arizona; excluding Cemetery Ridge, 
where detrital zircon is accompanied by considerable young metamorphic 
zircon (Jacobson et al. 2017). N, number of samples; n, number of analyses. 
Horizontal scale changes at 300 Ma; vertical scales on either side of break 
di�er such that equal area represents equal probability.
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Figure 5. Actinolitite. (A, B) Actinolite pods in Orocopia Schist: Gavilan 
Hills, southeast California (A; coin 33 mm); Plomosa Mountains, southwest 
Arizona (B; WOV ≈ 8 cm). (C) Enrichment of Cr and Ni in actinolitite. Field 
of mantle peridotite includes primitive and depleted mantle. (D) Major 
and trace element concentrations in Orocopia actinolitite in �ve mountain 
ranges, southeast California and southwest Arizona; normalized to depleted 
mantle (Salters and Stracke 2004). Among the three essential elements 
(bold), congruence of Ca is required by stoichiometry of actinolite, whereas 
Mg and Fe could vary widely but do not: MgO / (MgO + FeO*) = 0.85 ± 0.03.
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Figure 4. Ferromanganiferous metachert and siliceous marble. (A) Finely 
layered Fe-Mn metachert (spessartine-magnetite quartzite): mostly quartz, 
with thin yellowish layers of quartz plus spessartine and thin orangish layers 
of quartz plus limonite after magnetite; Orocopia Schist, Cemetery Ridge, 
southwest Arizona. Coin 19 mm. (B) Spessartine-rich layer; colorless matrix 
is quartz. PPL, WOV 1.2 mm. (C) REE spectra of metachert and siliceous 
marble, PORS, southern California and southwest Arizona (Haxel et al. 2021). 
Ce* = Ce extrapolated (logarithmically) between La and Pr. (D) REE in North 
Paci�c seawater, for three shelf to bathyal depths (Alibo and Nozaki 1999). 
Upper and lower graphs di�er in vertical scale by a factor of two. In both 
REE concentrations are shale normalized (Pourmand et al. 2012).
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Figure 3. PORS metabasalt. (A) Weathered surface of medium-grained schistose 
amphibolite, composed of black acicular hornblende, white porphyroblasts of 
calcic andesine, and minor diopside and titanite (not visible); Orocopia Schist, 
Cemetery Ridge, southwest Arizona. Diopside is atyptical, and owes to unusually 
high metamorphic grade, upper amphibolite facies, at Cemetery Ridge. Coin 
21 mm. (B) Morb a�nity of PORS metabasalt. (C) Most common type of 
chondrite-normalized (Pourmand et al. 2012) REE spectra of PORS metabasalt 
(Haxel et al. 1987; Dawson and Jacobson 1989; Strickland et al. 2018).
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Figure 2. Orocopia quartzofeldspathic schist. (A) Stack of homogeneous 
schist; Gavilan Hills, southeast California. (B) Lithologic layering—transposed 
sedimentary bedding—parallel to foliation; Trigo Mountains, southwest 
Arizona. (C) Porphyroblasts of bluish-grey graphitic plagioclase, on weathered 
foliation surface of quartzofeldspathic schist; Cemetery Ridge, southwest 
Arizona. Coin 33 mm. (D) Biotite and garnet, with quartz, calcic oligoclase, 
K-feldspar, and graphite; Cemetery Ridge. PPL, WOV 2.3 mm.
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Figure 1. (A) Distribution of Orocopia Schist, and correlative Pelona 
and Rand Schists (collectively PORS), southern California and southwest 
Arizona, showing recently discovered exposures of Orocopia Schist at 
Cemetery Ridge and in the Plomosa Mountains, relative to the main locus 
of Orocopia Schist, the Chocolate Mountains anticlinorium. Orange arrow 
marks approximate direction of subduction of PORS, inferred from the 
orientation of prograde metamorphic lineation (Haxel et al. 2018a). Map 
updated from Haxel et al. (2002); metamorphic core complexes after 
Spencer and Reynolds (1989a, 1990). (B, C) Cartoons illustrating low-angle 
subduction model for PORS (after Grove et al. 2003, Haxel et al. 2015).

“Alamo
  schist”

Orocopia Schist Subduction Channel, Southwest Arizona
�e Orocopia Schist is a latest Cretaceous low-angle subduction channel, part 
of a larger subduction complex, the Pelona-Orocopia-Rand Schist (PORS), 
that underlies much of southern California and southwest Arizona (Fig. 1; 
Jacobson et al. 1988, 2007, 2011; Haxel et al. 2002; Chapman 2016). �e 
principal locus of Orocopia Schist, the Chocolate Mountains anticlinorium 
extending from the Orocopia Mountains east to Neversweat Ridge, has been 
known since the mid 1970s (Haxel and Dillon 1978). Recently, two more 
exposures of the oceanic Orocopia Schist have been found at isolated localities 
farther inland in southwest Arizona: Cemetery Ridge (Haxel et al. 2015, 2018b, 
2021; Jacobson et al. 2017) and northern Plomosa Mountains (Strickland et 
al. 2017, 2018; Seymour et al. 2018). �ese discoveries raise the possibility 
that additional inboard areas of Orocopia Schist have yet to be found. Hence 
a review of criteria for recognition of Orocopia Schist is warranted.

Positive Criteria
P1—Homogeneous quartzofeldspathic schist—metamorphosed turbidite 

sandstone—with planar schistosity parallel to transposed bedding (Fig. 
2A, B).

P2—Porphyroblasts of bluish-gray to black graphitic plagioclase (Fig. 2C).
P3—Metamorphic biotite ± accessory garnet in quartzofeldspathic schist 

(Fig. 2D).
P4—Sparse layers of morb-like metabasalt, most commonly with �attish 

(T-morb–like) chondrite-normalized REE spectra (Fig. 3).
P5—Sparse layers of ferromaganiferous metachert (magnetite-spessartine 

quartzite) and siliceous marble; REE spectra have negative Ce anomalies 
inherited from seawater (Fig. 4).

P6—Pods of coarsely bladed high-Cr and -Ni actinolitite, produced by 
interaction of subducting schist with peridotite (Fig. 5).

P7—Pods or blocks of serpentinite, calc-serpentinite, or peridotite (rare).
P8—Detrital-zircon age spectra with Paleoproterozoic, Mesoproterozoic, 

Jurassic, and Late Cretaceous peaks (Fig. 6).

Negative Criteria
N1—Sedimentary or volcanic features visible in hand specimen: sand grains, 

pebbles, quartz or feldspar phenocrysts, lithic �agments, pumice lapilli, 
or eutaxitic foliation.

N2—Pelitic rocks.
N3—Quartzite derived from quartz arenite.
N4—Banded iron formation or associated ferruginous metachert.
N5—Pre-Cenozoic igneous intrusions.

Not Orocopia Schist, Regional
Regional or local units that fail several or most of these criteria include: 
(1) Proterozoic metasedimentary rocks in the Harcuvar-Buckskin core 
complex, Bouse Hills, and hills west of Tonopah. (2) Metamorphosed 
Paleozoic and Triassic strata. (3) Metamorphosed Jurassic and Cretaceous 
sedimentary, volcanic, volcaniclastic, and hypabyssal rocks widespread in 
southwest Arizona. 
Not Orocopia Schist: “Alamo Schist”
Elliott and Corones (2019) suggest that schistose rocks along Alamo Crossing 
Road northeast of the Rawhide Mountains (Fig. 1; Bryant 1995) are Orocopia 
Schist. However, this so-called “Alamo schist” fails all of criteria P1 to P8—it 
lacks the oceanic character of Orocopia Schist. Equally important, the “Alamo 
schist” decisively fails N1. �e speci�c rock mistaken for Orocopia Schist is 
a loose block, beside the road, of dark-gray metarhyolite (Fig. 7A, B, C). �is 
block lies within, and is presumably part of, a fault-bounded sliver of Miocene 
megabreccia, probably rock-avalanche or debris-�ow breccia (Fig. 8; Lucchitta 
and Suneson 1989, 1994; Spencer and Reynolds 1989; Spencer et al. 1989; 
Yarnold 1989; Yarnold and Lombard 1989). Surrounding outcrops within the 
breccia unit are light-gray metamorphosed rhyolitic lithic tu� and tu�aceous 
sandstone (Fig. 7D), sericitic and weakly to moderately foliated. All these 
low-grade metamorphic rocks have prominent remnant quartz phenocrysts 
(Fig. 7B). None contain graphitic plagioclase or metamorphic biotite. Our 
�eld examination and comprehensive map-unit description by Lucchitta 
and Suneson (1994) and Bryant (1995) provide no evidence for presence of 
Orocopia-like metabasalt, Fe-Mn metachert or marble, or actinolitite. Several 
other features described by Elliott and Corones (2019) are likewise consistent 
with sedimentary or tectonic breccia but inconsistent with Orocopia Schist.

�e spectrum of U-Pb zircon ages from the dark metarhyolite comprises a 
single peak at 160–180 Ma, centered on 167 Ma (Elliott and Corones 2019, 
Fig. 3). Jurassic igneous and meta-igneous  rocks are common in southwest 
Arizona and southeast California. �e metarhyolite lacks zircon of other ages 
characteristic of Orocopia (meta)sandstone (Fig. 6) because the analyzed 
rock is not sedimentary. 

Conclusion
In correctly identifying Orocopia Schist, both positive and negative criteria 
are important. We hope the information summarized here can further the 
search for additional exposures of subducted schist in western Arizona by 
averting any more false positives. 
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